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The time correlation function ~( t )=  Re([c( t ) ,  c*(0)] ), which is related to the 
dipole spectrum and is the main focus of quantum molecular time scale 
generalized Langevin equation theory, is calculated for the Hamiltonian system 
in which a single oscillator is coupled by a nonlinear Davydov term to a chain 
of oscillators comprising a phonon heat bath. An exact expression for ~(t) is 
obtained. At long times we find that the time correlation function decays as 
a small power law at T = 0 K ,  but switches to exponential decay at higher 
temperature. This is a new result and bears on the long-standing issue of the 
existence of long-time tails. 

KEY WORDS:  Time correlation function; long-time tail; nonlinear; 
generalized Langevin equation. 

1. I N T R O D U C T I O N  

The role of time correlation functions (TCF) as a formal tool in statistical 
mechanics is fundamental) u It is therefore of interest to examine their 
properties and behavior, especially for Hamiltonian systems, which can 
serve as archetypical models. Generally speaking, except for linear systems, 
which can be solved straightforwardly, such studies must be carried out 
computationally, since only a very few nonlinear Hamiltonian systems can 
be solved analytically. Analytic solutions, when they can be obtained, serve 
as important benchmarks to calibrate computational studies and to 
improve our understanding of TCFs. 
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One nonlinear Hamiltonian system for which an exact solution exists 
is the single-oscillator Davydov Hamiltonian (2) given by (3) 

H=hoo 0 ctc + + ~, ho3 k a2a~ +~ 
k= N 

N 
--(2c*c+1) ~ h~r~(ak+a~) (1) 

k = - - N  

where 

= ooa sin ~ (2) (,O k 

with ooa the maximum frequency of an acoustic phonon band and 

2~ ~k ~[sin[~k/(2N+ 1)]1} 1/2 
ak = T sgn k c~ ~ 1 -  [ :2N+l (3) 

with )~ the nonlinear coupling parameter; sgn k is the sign (+ 1 or - 1  ) of 
the index k. The annihilation (creation) operators c (c*) and ak (at) repre- 
sent the single-oscillator and the phonon modes respectively. The oscillator 
frequency of the single oscillator is given by COo. The phonon chain is 
2N+ 1 units long with labels from - N  to N with the single oscillator 
situated at site 0. In the final results N is taken to be indefinitely large. The 
Hamiltonian in Eq. (1) represents a single oscillator, which we call the 
vibron, coupled nonlinearly to a harmonic phonon bath. It will be 
recognized as a displaced harmonic oscillator which can be exactly 
diagonalized. (4-6) In this paper we carry out this diagonalization and then 
for the first time explicitly calculate the time correlation function )~(t) of the 
vibron quantum oscillator given in Eq. (4). We obtain the unexpected 
result that an impulse given to the system at t = 0  decays at moderate 
temperatures as a small inverse power of time for many cycles before finally 
entering into exponential decay. 

As has been discussed elsewhere, (3~ Eq. (1) is a modified version of the 
Takeno Hamiltonian, (v) which is based on physically real models of non- 
linearly interacting vibrational systems in pseudo-one-dimensional solids. 
For the case of a single vibron oscillator, the Takeno Hamiltonian can be 
written in the form 

N 

H = h o o o ( C + C + ~ ) + k ~ _ N h o o k ( a t k a k + ~ )  

N 
+(c*-c)  2 ~ hak(ak+a*k) 

k --N 
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This Hamiltonian has no known exact solutions. The Hamiltonian of 
Eq. (1) is obtained by retaining in the interaction term only terms in c~c 

and cc ~. This has the effect of making the perturbation acting on the vibron 
oscillator diagonal in the eigenstates of hcoo(C*C + 1/2) and conserving the 
number of quanta in the vibron oscillator, which is the feature that makes 
the problem exactly soluble. The Davydov Hamiltonian in Eq. (1) is there- 
fore physically distinct from the Takeno Hamiltonian. It can nevertheless 
be derived from a real physical model only slightly different from the model 
underlying the Takeno Hamiltonian. (8) Because it can be solved exactly, 
the Davydov Hamiltonian is a valuable prototype model. 

The Davydov Hamiltonian is also widely used as an approximation to 
the Takeno Hamiltonian ~7) for situations where the vibron oscillator 
frequency coo is much greater than the highest frequencies in the phonon 
band. For such cases the terms in the Takeno Hamiltonian in c*c t and cc 

are neglected because they have the effect of introducing unimportant terms 
with frequencies near 2~0 0. This approximation is generally known as the 
rotating wave approximation. (9'~~ 

The TCF of interest for the Hamiltonian system in Eq. (1) is given by 

~(t) = �89 re(0), ct(t)] + [-c(t), c*(O)3 > (4) 

where the quantum statistical average ( - . . )  is taken to be the canonical 
ensemble. This particular form arises naturally in a quantum version 
of molecular time-scale generalized Langevin equation (MTGLE) 
theory.~H 16) Furthermore, the cosine Fourier transform of the TCF given 
by 

p(co) = - dt  2 ( t )  cos cot (5) 
o 

has been shown elsewhere (~4~ to be related to the dipole spectrum of the 
single oscillator and thus serves as a means of establishing the location and 
line shape of spectral lines and their temperature dependence. In this paper 
the eigenvalues and eigenstates of the Hamiltonian in Eq. (1) are used to 
find an exact expression for 2(0- 

In studying the properties of the TCF in Eq. (4) we will be interested 
in its behavior at both short and long times. The long-time behavior is of 
interest since the question of a long-time tail arises. (17"~8) This issue has 
been reviewed and new insights provided by R.F. Fox in a seminal 
paper. (~9) The exact asymptotic (long-time) behavior we find for this 
system is especially important in that a power law decay is found at 
absolute zero which switches over to a power law decay at intermediate 
times and exponential decay at long times for finite temperatures. 
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The organization of this paper is as follows: in Section 2 we develop 
an exact solution for )~(t). Section 3 presents a derivation of the short-time 
form, while Section 4 presents the long-time form. Section 5 contains some 
concluding remarks. 

2. D E R I V A T I O N  OF EXACT S O L U T I O N  

Diagonalization of Hamiltonians similar to the one in Eq. (1) and sub- 
sequent analysis of their time-dependent properties has been discussed in a 
number of papers. (4 6) Our focus here is to calculate and describe the time 
evolution of the particular TCF given in Eq. (4). We first carry out a 
canonical transformation using the definitions 

U--exp ( 2 c t c + l )  ~ a - L ( a ~ - a ~ )  (6) 
k = - - N  (Dk 

D = UcU t (7) 

and 

Bk = Uak U t (8) 

These definitions lead directly to the transformed Hamiltonian 

H = H e + H D (9) 

where 

and 

N ( 1) 
HB = Z hC~ B*kBk + ~  (10) 

k =  N 

HD = hcoo D*D + ~ - hq(2D*D + 1 

N 2 
t /= ~ ak 2)~2 

k =  - - N  O')k h2c-~ (12) 

The latter result for the parameter t/is obtained by substitution of Eqs. (2) 
and (3) into the sum, converting the sum to an integral as N goes to 
infinity, and performing the integration. The transformation defined by 
Eq. (6) can be explicitly carried out to achieve the well-known result (4 6) 

D(t )  = e s(')c(t) (13) 
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o r  

c(t) = eS(~ (14) 

where 
N 

S(t)=2 ~ a~(B~(t)_B~(t)) (15) 
k =  - - N  COk 

The structure of Eq. (14) permits us to obtain the explicit time dependence 
of c(t). We first note that B~(t) and D(t) can be found in explicit form from 
the transformed Hamiltonian as 

Bk(t) = e ~k'B~(0) (16) 

and 

D(t)=exp{-iO~ot+iSq[D*(O)D(O)+ 1] t} D(0) (17) 

The explicit time dependence of c(t) is found by substituting Eq. (16) and 
its adjoint and Eq. (17) into Eq. (14) to obtain 

c(t)=eS(~ t} D(0) (18) 

where S(t) is now given explicitly by 

N 

S( t )=2  ~ ak , i~ok, e-i~et) - -  (Be(0) e - Bk(0 ) (t9) 
k =  - - N  (J )k  

We next proceed to compute the time correlation function ~(t). Since 
the transformation defined by Eq. (6) is unitary and the Hamiltonian is 
separable, we have 

( c(t) e+(0))= (eS(tle- S(~ (D(t) Dt(0) )D (20) 

where 

(eS(Oe s{o)}B = ~ TrB e-PUBeS(0e-S(~ (21) 

N e - flh~~ 

QB=Tre e ~/4B= ]-] 1--e-~ h~ (22) 
k = - - N  

nmax 

(D(t) D*(O))D--QD ~" e ~E~ D+(O)ln ) (23) 
n = 0  

nmax 

Qo= ~ e mE. (24) 
t / = 0  
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and 

E,~=hoo (n + ~) - h~l(2n + l ) 2 (25) 

A number of points need to be made here. First, the trace operation in 
Eqs. (21) and (22) is over the harmonic oscillator states associated with 
the 2N+ 1 independent oscillators labeled by the index k. The sums in 
Eqs. (23) and (24) are over the harmonic oscillator states associated with 
the Hamiltonian HD. We note from Eq. (11) that HD is diagonalized by 
harmonic oscillator states but with a shifted energy given by Eq. (25). 
However, it is necessary to truncate the number of states in Eqs. (23) and 
(24) since the unphysical polynomial interaction implied in Eq. (1) leads to 
large negative energies for large n. (2~ The energy E. given by Eq. (25) 
reaches a maximum for 

AE,= E,,+ I -  E,,=O (26) 

which requires that 

r/ma x + 1 =--CO0 (27) 
8~/ 

For typical values used later in Eq. (53), co0/8r / = 0.25 x 104. The expecta- 
tion value of (n + 1), on the other hand, is given approximately by 

( n + l ) =  1 - e x p  - kT,lJ 

which for T--300 K is typically less than 10. Thus, for temperatures up 
to room temperature the eigenvalue spectrum given by Eq. (25) can be 
truncated at its maximum value with insignificant numerical error. 

In the Appendix, we show that the ensemble average in Eq. (21) is 
given by 

a~ sin ok t + 4 a~ (eS(t)e-S(~ ~co~ 

 28, 

The ensemble average in Eq. (23) is easily computed by substitution of 
Eq. (17) to give 

nmax 

(D(I) Dt(O))D--QD ~ e-~e"e-i~~ (29) 
n = O  
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From Eqs. (20), (28), and (29) and their complex conjugates it is a simple 
matter to determine 2(0, which we write as 

2(0 = e(t) f(t) 
where 

= e (n + 1) cos ~e)o- 8rl(n + I)] 
f ( O  ,, o 

--nc~176 k 

and 

(30) 

t + 4 ~ -a--~2 sin e)kt} o) k 

(31) 

a2 (cos OJkt-- 1) coth ( ~ ) ]  (32) e(t) = exp I4 ~ co---~ 

The exact solution given by Eq.(30) provides us with a rather 
straightforward analytic form which can be used to study the behavior of 
the time correlation function 2(t). 

To obtain a more explicit form of Eq. (30), we make use of the defini- 
tions of cok and ak in Eqs. (2) and (3 ) .  (2,3) Examination of Eq. (30) shows 
that only two functions need to be computed; namely, e(t) in Eq. (32) and 

g ( t ) = 4  a-~2 sin cok t (33) 
k = - - N  ( 'Ok 

To determine g(t), we substitute Eqs. (2) and (3) into Eq. (33) and let 
N ~  0% to obtain 

32)~2 r~/2 c~ Y sin(coot sin y) 
g(t)-  rch2c02o Jo dy sin y 

16;~2 fo,~t Jl(X) 
- 2 2 d x  ( 3 4 )  

h co a x 

where a standard integral representation for the Bessel function Jl(x) is 
used. Substituting Eq. (12), we have 

g(t) =--8tl f~ (35) 
~aJO X 

f(t)=~-~D 
nmax 

e ~e"{(n+ 1)cos{[~oo-Stl(n+ 1)] t+g(t)} 
n = 0  

so that 

- n cos [(co o -- 8t/n) t - g(t)] } (36) 
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By a similar argument, the function e(t) can be written as 

e(t) = exp /~h2o)2a 30 dyy --~-- coth (37) 

We have not achieved a further reduction of this integral. Since Eqs. (35) 
and (37) are both one-dimensional integrals, it is a simple matter to 
calculate them numerically, using, for example, Simpson's rule. Thus, we 
have achieved through Eqs. (30), (35), and (37) an exact solution for the 
Davydov time correlation function in Eq. (4) which can easily be computed 
for arbitrary choice of the defining parameters. In the next sections we 
further extend the analytic analysis and develop both short- and long-time 
forms. 

3. T I M E  C O R R E L A T I O N  F U N C T I O N  AT S H O R T  T I M E S  

We begin by examining g(t) in Eq. (33). We have, after expansion of 
the sine function, that 

g(t) ~ 4t Z a-~-k2 = 4r/t (38) 
k (Dk 

for t small, using Eq. (12). Similarly, the function e(t) in Eq. (32) reduces 
to 

e(t)~exp l-2t2 ~ a~ coth (flh-P-~k)] (39) 
k 

at small t so that 

 ,t, expE 2,2  2coth( )l 
nmax 

x - -  ~ e-~E"cos[cOo-4~/(2n+ 1)] t (40) 
QD n = O  

which can then be further expanded to give 

)~(t) ~ 1 - ~  (co 0 - 4tl(2n + 1 )o) 2 + 4 ~ ~k 
k 

This is in agreement with MTGLE theory, (11 16) which gives for short times 

1_ 2.2 (42) ~ ( t )  - -  1 - ~ % 0 '  

where 

co 2 = ([~(0), ~*(0)] ) (43) 
eo 
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4. T I M E  C O R R E L A T I O N  F U N C T I O N  AT LONGER T I M E S  

We first examine g(t)  in Eq. (34). For long times we approximate g(t)  
a s  

16)~2 f o  J l ( x )  g(t)  ~ ~ dx - -  (44) 
h fO a X 

since the integrand goes to zero at large values of x. The integral is found 
to be equal to 1, so that 

16)~ 2 8*/ (45) 
g(t)~- 2 2-- h CO 09 a 

at long times. 
We next focus on the exponential in Eq. (37). The argument of the 

exponential can be broken up into a contribution independent of tem- 
perature and a part which becomes nonzero only as temperature increases 
from T=0K.  This is accomplished by rewriting the hyperbolic cotangent 
factor in the form 

coth( ) j f46, 
Note that the temperature-dependent factor in brackets goes to zero at 
T= OK. Focusing first on the temperature-independent part, we have 

64;~2 ~1 (1 - y2)1/2 sm z coaty 8t 1 (~'Otdx J~ (x )  (47) 
~h2co ] 3o dy Y 2 - ooa :o ---7--- 

where .gf~(x) is the Struve function. (21) One can show by a variety of 
arguments, including numerical integration via computer, that 

Thus, the long-time form for the exponential factor in Eq. (37) at T= OK 
is 

e(t)_~ (o)at) 16~/~aexp [ -  co,8r/(0.172118) 1 (49) 

Combining Eqs. (30), (45), and (49) at T = 0  K, we have 

e x p [  - (8r/ /coa)(0. t72118)3 
2(t)~- (o~at),6./.,oo co, lifo 

822/67/1-2-22 
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We find that the exact quantum time correlation function )?(t) at T =  0 K 
has a long-time tail or power law decay. We believe this result to be a new 
and previously unknown example of a long-time tail. 

We turn next to the contribution of the second temperature-dependent 
term in Eq. (46) to the exponential factor in Eq. (37). We have that 

~h2c0 ] 64)~2 f]  dy (1 -- Y2) l / 2 y  sin2 Tc%tY[ coth ( f l ~ - ~ )  ] -  1 

128)~2 ~1 dy (1-y2)1/2 sin" 2c~ (51) 
rch2o~ 2 Jo y(-7~h---~27 7 15 2 

At not too high a temperature the principal contributions to the integral 
come at small y, so we drop the square root term and extend the upper 
limit to infinity. Thus, 

128)~2 El dy (1 --  j2)1/2 
gh  2(J)2 Jo y(e ~~ -- 1) sin2 coSYa 

128)~ 2 I ~ sin2(OOaty/2) 
~ 2(D2 JO dy y(gflhO, ay __ 1) 

- ~-~+ln 1 exp(-2rct/h/~!)] 
2~t/hfl ]J (52) 

The final integration in Eq. (52) was obtained from a standard source. (22) 
Combining the T = 0  K result in Eq. (48) with Eq. (52), we have for e(t) at 
long times and T >  0 K that 

e(t)=exp(-o)-78r/{ 0"172118+21nhc~ ~r In 

2~rt~ 2t 

We have tested this approximate long-time form against the exact 
solution in Eq. (37) for a variety of parameter choices and find excellent 
agreement. As an example, we show in Figs. 1 and 2 plots of In e(t) for 
Eqs. (37) and (53) at very short (Fig. 1) and at long times (Fig. 2). The 
parameter values are hcoo=30cm 1, h~oa=60c m 1, )7=0.3 cm 1, and 
T = 5 0 K .  This particular choice of parameters is described elsewhere. (3) 
The agreement is manifest. 

An approximate closed form for the D-space sum in Eq. (36) can be 
obtained using the result for g(t) in Eq. (45). We begin by dropping the n 2 
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term in Eq. (25) for En. We denote the approximate energy by E~ and 
obtain 

he)~ h E a = h a ) l n +  ~ - -  t 1 (54) 

where 

Noting that 

0 )  1 = ( / ) 0  - -  4t/ (55) 

E~ = E,~+1 - he) 1 (56) 

we have, letting nma x become indefinitely large, 

e -~e~ ( n + l ) c o s  [COo-8~ / (n+ l ) ] t+  8t/ 
f ( t ) ~- --~D ,, = o ~o~ ) 

and then resetting the index n in the first term, 

- -  e-~e~n e ~h'~l cos (o9 o - 8r/n) t + f ( t ) ~ - Q ;  .=1 

- cos (co o -  8qn) t -  (58) 

At long times the factor _+8r//co a in Eq. (58) can be dropped to yield 

f ( t ) _ e  ~h~ 1 ~ e ~e~n[cos(cOo-8r/n) t] (59) Qa 
D n = l  

The partition function can be evaluated and we have 

Q ~ =  ~ e 
e x p [  - fl(h~oo/2 - hq ) ] 

1 - e - ~h'~ ( 6 0 )  
n = O  

Substituting Eq. (60) into Eq. (59) yields 

f(t)=(eBhO)l_l)(l_e ~ ~/~z)l ) ~ e - ~ h ~  t} 
n - - 1  

= Re(e ~h~ 1)(1 - e  Ch~a) exp(ie)ot-flhc~ - i8qt)  
[1 - e x p ( - f l h o o l - i 8 q t ) ]  2 (61) 
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Rearrangement of Eq. (61) by some straightforward but tedious manipula- 
tions yields 

2 cos(cOot- 2 t a n - l {  [2n(cOl) + 1] tan 4r/t }) 
f(t)=l+[2n(col)+l]2+{l_[2n(eJ1)+l]2}cos8tlt (62) 

where 
1 

/ 7 ( 6 0 I )  = e/~h~ - -  1 (63) 

Although it is an approximate form, we have found Eq. (62) to be 
extremely useful in another context. (3) To achieve a final approximate long- 
time expression for 2(0, we combine Eqs. (53) and (62) to obtain 

8~ {O.172118+21nhcoafl 
)~(t) ~ exp - co---~ ~z 2~ 

2 I ( 2 <  2,}) +-rcln 1 - e x p  - ~ - ] j + ~ - f i  

2cos(coot-2tan 1{[2n(col)+ 1] tan4qt}) 
Xl +[2n(col)+ l]2+ {l_[2n(ool)+ l]2}cosStlt (64) 

In examining the exponential contribution e(t) from Eq. (53) to Eq. (64) 
we find there are several time regimes. For 2~t > hfi we find 

e(t)=exp(hco~fll6r/t) (65) 

which displays exponential decay for T> 0 K. For 2rtt~hfl, but beyond 
initial transients, we find 

e(t)=exp[-co~8r/(0"172118+21ncoat)lTz (66) 

Equation (64) therefore shows that for t ~ h/2rtkT, 2(0 decays as a small 
power of time in agreement with Eq. (50), but that for t>h/27rkT, 2(t) 
decays exponentially. Thus, for very low temperatures there is a long 
period of small power law decay followed by exponential decay. 

5. C O N C L U S I O N  

We have examined a time correlation function for a nonlinear con- 
densed matter Hamiltonian whose spectral density is related to the dipole 
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spectrum. The Hamiltonian, which couples a single oscillator nonlinearly to 
a chain of oscillators, can be diagonalized. Using the diagonalization results, 
we have obtained an exact expression for the TCF. Using this expression, 
we have obtained exactly the long-time behavior and shown that the TCF 
decays as a power law at T= 0 K. At somewhat higher temperatures there 
is an extended period of time during which the TCF decays as a power law 
followed finally by exponential decay. We believe this behavior to be a new 
result which adds to our understanding of time correlation functions. 

A P P E N D I X  

From Eq. (19) one finds that 

62 (ei~, e i~k,) (A.1) [s(0, -s(0)]  = -4 Z 

Using the operator relation 

eAe B = e A + % EA. B~/2 (A.2) 

and Eq. (21) yields 

a2 (ei~k, i~k~) Q~ (eS(t)e- s(0) ) ~ = exp - 2 co---~k - e - 

x ~ e x p [ - - f l h ~ o ~ k ( n k + ~ ) l M { n  } (A.3) 
{,,} =o 

where 

M{n} = ({n}, exp {2 k~ a~ka--~-k [(e~O~, - 1)B,k(0) + ( 1 -  e-'~k')Bk(0)]} [{n}) 

(A.4) 

and 
{ f / }  = F/ N, FI_N+I,.. . ,FIN l , n N  (A.5) 

Focusing on M{n} and using Eq. (A.2) again yields 

M{n}=expl--2~ak(ei~ /~*~)] 

x ({n},exp[y' ,#kBk(O)]exp[~vkB~(O)~ [{n}) (A.6) 
LT A L T  J 
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where 

and 

/~k= 2 a~ (1 - e  io~) 
(D k 

(A.7a) 

v k = 2 a ~  (e~O~k , _ 1 ) 
Ok 

(A.7b) 

The matrix elements in Eq. (A.6) can be rewritten as 

N 
= 1-I (nkl e~kBk(Ole~kB*k(O)Ink) 

k =  N 

which is easily shown to be equal to 

[I  ~ (pkVK);~(nk+)~)' 
k= N 2=0 ( 2! )2  Hk! 

( e S ( t ) e  - s ( o )  ) B 

[ J = exp 4 ej---~k(l--ei~~ 

x 1~ e-~o~/2 exp --flhco k nk+ 
k = N nk ~ 0 

~ (UkVk) ~ (nk + 2)! 
• 

;,=o ()L!) 2 n,! 

Thus, 

Using the fact that 

(A.8) 

(A.9) 

( ~-k-~~ - ~ ~(~+~3~ (A.)O) 
1 - x /  ~.=o n! ).! 

we Obtain, after carrying out the 2 and n, summations in Eq. (A.9), that 

[ , (eS(')e s (~  p - 4 i  ~--~sincokt 
(1) k 

+ 
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